Reference	${\rm NH_4^+}$ extraction method	conversion to IRMS analyte	δ^{15} N measurement
Feast and Dennis 1996 ^[2]	distillation	Rittenberg oxidation	$\delta^{15}N_2$ on IRMS
Feast and Dennis 1996 ^[2]	distillation	Dumas combustion	$\delta^{15}N_2$ on IRMS
O'Deen and Porter 1980 ^[4] ;	diffusion	Rittenberg oxidation	$\delta^{15}N_2$ on IRMS
isgaard-Petersen et al.1995 ^[7]	diffusion	Rittenberg oxidation	$\delta^{15}N_2$ on IRMS
Holmes et al. 1998 ^[6] ;	diffusion	Dumas combustion	$\delta^{15}N_2$ on IRMS
Sebilo et al. 2004 ^[8]	diffusion	Dumas combustion	$\delta^{15}N_2$ on IRMS
isher and Morrissey 1985 ^[10]	Hg precipitation	Dumas combustion	$\delta^{15}N_2$ on IRMS
Lehmann et al. 2001 ^[3]	cation exchange collection	Dumas combustion	$\delta^{15}N_2$ on IRMS
Dudek et al. 1986 ^[9]	indophenol	Dumas combustion	$\delta^{15}N_2$ on IRMS
Preston et al. 1996 ^[5]	indophenol	indophenol derivative	GC/MS
Norlin et al. 2003 ^[21]	solid phase extraction	headspace equilibration	¹⁵ NH ₃ on GC/C/IRMS

Table 1 Selected published methods for $\delta^{15}NH_4^+$ measurement

REFERENCES

21 Norlin, E.; Irgum, K.; Ohlsson, K.E. *Rapid Commun Mass Spectrom.* **2003**, 17, 936-942

	·1
DON in DIW	oxidation yield
Glycine	30.75%
Alanine	12.30%
Serine	14.38%
Cysteine	1.99%
Proline	2.99%
Aspartic Acid	5.00%
Arginine	9.40%
Phenylalanine	6.30%
Glucosamine	8.70%
Egg Lysozyme	3.14%
Nicotinic	3.42%
Urea	4.24%

Table.2 DON oxidation yield (%) in DIW

Fig.1. Fractionation effects on $\delta^{15}NH_4^+$ in DIW and SW caused by incomplete oxidation. "f" is the fraction of unreacted NH_4^+ . The fractionation factor is estimated by the slope of the regression.

Fig.2. Changes in blank effect on $\delta^{15}N$ for changes in reagent addition in DIW. Low $[NH_4^+]$ (0.5µM) was used to accentuate the blank effect.

Fig.3. Comparison of NH_4^+ Conc. (μM) in Lake Kinneret water samples measured by hypobromite and indophenol method respectively.